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We generalize the standard phase-field model of solidification to accommodate a complex-valued
order parameter. This model allows for a direct incorporation of crystalline anisotropy and also
allows for a nontrivial dynamical competition between bulk “bending” energies of the axes as com-

pared to anisotropic surface energies.

We illustrate this by studying a specific case of compet-

ing anisotropies; simulations demonstrate the nontrivial spatio-temporal evolution of the dendritic

growth direction.
PACS number(s): 68.70.+w

Since their advent, phase-field models have become
an important tool in the study of interfacial patterns in
diffusion-limited growth [1-3]. In particular, they have
been used to move beyond the study of isolated growth
elements such as single dendrites toward investigation of
the overall global morphology of the evolving pattern [4].
The standard phase-field approach assumes that the solid
can be described by a real order parameter field; the time
evolution of this field is coupled to a diffusing variable to
form a complete microscopic model of the solidification
process. This work suggests a useful generalization of
this method in which the solid is described instead by a
complex field.

Part of the motivation for this work lies in trying to
understand the patterns that can occur in the diffusion-
limited growth of condensed-phase monolayers [5-7].
Here, the interesting phenomena range from equilibrium
interfaces which exhibit sharp cusps [8,9], to the stan-
dard nonequilibrium patterns involving fractals or stable
dendrites, to the enigmatic “spiral” dendrite [10] seen in
nonreflection symmetric molecules. In these cases, there
seems to be the interesting possibility that the various
order parameters of the condensed phase vary with po-
sition in the bulk, possibly forming defects and/or do-
main walls, and that these interact with the condensed-
expanded interface. While we have nothing specific to
say about these patterns in this Brief Report, extensions
of our current technology to allow for the correct incor-
poration of crystalline anisotropy as a consequence of ro-
tational symmetry breaking in the condensed phase is a
prerequisite for making a microscopic model relevant for
future efforts on monolayer systems.

The standard phase-field model describing diffusion-
limited solidification is defined by the equations

dv _ 6F[Y,U] (1)
dt ~ 6T
dUu 1d¥
2 = -
DViU dt 2dt’ )

where ¥ is a real-valued order parameter describing the
phase of the material and U is a dimensionless tempera-
ture field, measuring the deviation from the melting tem-
perature T, (in units of L/C), the ratio of the latent heat
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to the heat capacity of the material). I' is the character-
istic relaxation time for the order parameter dynamics,
and D is the heat diffusivity of the material. F[¥,U] is
the free energy functional [11]

F[O,U] = /dFa(V\Il)z BT —1)? +cUT.  (3)

The first term measures the energy cost for spatial inho-
mogeneity of the order parameter. The second term is a
typical “double well,” with the minimum at ¥ = +1 rep-
resenting the solid phase, and the minimum at ¥ = —1
representing the liquid phase. At the equilibrium tem-
perature (U = 0), the two minima have the same height
(energy) so that neither phase is favored. Away from
equilibrium, the third term couples the phase to the tem-
perature by tilting the wells to favor the appropriate
phase. The right-hand side of (2) represents the latent
heat released at the interface as the liquid solidifies [1].
Note that this is the simplest phase-field model describing
diffusion-limited solidification. Models with greater ther-
modynamic consistency have been formulated by Penrose
and Fife [12].

One basic problem with the above formulation is that
it treats the crystalline solid as isotropic. Not only is
this quantitatively untrue, but in fact it has been shown
that anisotropy is perhaps the most crucial determinant
of pattern morphology in diffusion-limited growth. Pre-
vious workers have remedied this problem by introducing
anistropy with respect to some a priori fixed set of axes.
In one method, higher derivatives are added to the free
energy [4]. Another method is to expand the Hamilto-
nian in a (discrete) Fourier series which, in the continuum
limit, results in higher order derivatives of the (real) or-
der parameter in the dynamic equations [2]. Both meth-
ods eliminate the possibility of there being interesting
dynamics in the local orientational order parameter and
are therefore ill-suited to systems where such dynamics
might be important. We therefore wish to directly incor-
porate the orientational order into the phase of a complex
order parameter.

Our complex order parameter can be written as

T = |Ple™?, (4)
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where n is the order of the rotational symmetry of the
material and @ is the angle the crystal planes of the solid
make with respect to some reference axis. The magni-
tude of the new order parameter plays the role of the
old, real-valued order parameter; it indicates whether the
material is in solid or liquid phase. The phase denotes
the orientational order in a familiar manner; under (pas-
sive) rotation by angle o, ¥ — We~i"®  The previous
Landau-Ginzburg equation (1) is replaced by

d¥ _ §F[¥,U)

—FE =g (5)

In addition, we replace (2) with

U d|¥)?
dat - dt (6)

This reflects the fact that the release of latent heat de-
pends only on the change from liquid to solid; this in-
formation is contained in the magnitude and not in the
phase of the order parameter.

We now turn our attention to the details of the free
energy functional. We choose a new “double-well” po-
tential

DV3U —

Fol®,U] = ] 47 K|VE[? + o[ O] — 2)T[* + [T
+T'|¥|2tanh(AU))], )

which contains no odd powers of |¥|. Clearly, Fy is invari-
ant under rotations of the coordinate axes. The double
well has two equal minima at |¥|=0 (liquid) and |¥|=1
(solid). Note that this form of the potential is similar
to that used by Kupferman and Shochet in their simula-
tions [4].

The key to understanding how this approach can be
used to get physical anisotropy is to consider a term of
the form

Pl = 5 [anwpore, (8)

where z = = + 7y. It is invariant under coordinate rota-
tions since a rotation of the axes counterclockwise by an
angle a causes 97 — e"*97, whereas we have assumed
that ¥ — Pe~ > We add F, + F) to the free energy
Fy, and consider the extra contribution to the surface
tension induced by this term. The surface tension is just
the additional free energy per unit area introduced by re-
quiring the presence of a boundary between two phases
in equilibrium (U = 0). Integration by parts of the term
in question yields (for n even)

-;-/dr"(af|\ll|2)\ll+c.c. )

Since the physical solid-liquid interface is very thin, we
know that the largest derivatives of |¥| will be in a di-
rection normal to the interface, which can be thought of
as locally planar. Suppose this direction makes some an-
gle ¢ with respect to the positive z axis. Then, we can
approximately take |¥| to be a function only of the coor-
dinate along this direction, © = (z cos ¢+ ysin¢). Then
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0,|¥| =e"i¢ %—u\lﬂ. Thus, Eq. (9) reduces to

. —oo dan ‘1’2
%/dS e"‘(o_"’)/ du—(l-L)—|‘Il| + c.c., (10)
+

n
oo du

where the integration decomposes into a surface integral
and a line integral in the direction normal to the sur-
face. This latter integral is evaluated using the equilib-
rium |¥| profile for a planar interface (see, for example,
Ref. [1]). Thus, the surface tension is simply propor-
tional to cosn(f — ¢). The maxima of this function will
determine the directions of dendritic growth.

More generally, a free energy of (ei"%F, + c.c.) will
yield a surface tension proportional to cosn(6 + 6o — ¢).
Hence, the parameter 0y allows us to choose the dendrite
direction with respect to the crystal axes. Also, it is easy
to see that an n-fold order parameter can be used to con-
struct surface energy terms which are higher harmonics
of n. For example, one possible second harmonic term is
just

FO[w] = %/dﬂwagnqﬂ. (11)
We have performed simulations of the above complex-

phase-field model for the case n = 2, i.e., using a free
energy

F[U,U] = Fo + 2 (¥ Fp + e %% Fy)
474 (Fz(z) + Fé‘”*) . (12)

We have rescaled the equations so that the length unit is
I, = DI'//k (the “kinetics-limited diffusion length”),
the unit of time is {2/D (the related diffusion time), and
€ can be interpreted as the interface thickness (details of
rescaling in Ref. [13]).

Equations (5) and (6) were solved numerically using an
explicit scheme to integrate the equations in time on a
triangular lattice. Grid sizes were typically 100x115 grid
points. Unless otherwise specified, the results described
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FIG. 1. Sixfold symmetry for branching pattern at

A = 0.65.
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below used ¢ = 04, A = 10, = 1.0, T = 0.6, and
—U(o0) = A = 0.6. Initial seeds were circles with radii
of 6. In the figures which follow, points for which |¥| >
0.5 (the “solid”) are represented by line segments whose
orientations indicate the inclination of the crystal planes
with respect to the z axis.

Note that the discretization of space in a simulation
introduces an artificial “lattice anisotropy” in a model.
It has been demonstrated that a grid with extremely
fine resolution (e.g., 2500x2500 grid points) can mini-
mize these effects [4]. Unfortunately, we lacked the com-
puting resources to run such large scale simulations and
were forced to rely on underresolved simulations. To
obtain some idea of the lattice anisotropy implicitly in-
troduced by our grid, we ran an isotropic free energy
(72 = na = 0.0) at an undercooling A = 0.65. Exami-
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nation of the resulting plot (Fig. 1) shows that the lat-
tice anisotropy is too weak to produce stable dendrites,
and instead we see a dense-branching morphology. Note,
however, that the sixfold symmetry of the lattice is evi-
dent in the overall growth pattern, showing that the di-
rections obtained by m/3 rotations from § are the fastest
growing directions.

Next, we tested the ability of the model to exhibit
twofold dendrites. We simulated the growth of an initial
seed with crystal axes parallel to the = axis and dendritic
growth perpendicular to the crystal axes [Fig. 2(a)] with
the parameters 772 = 0.32, 54 = 0.0, 6 = 0.0. The
same parameters run on an initial seed with crystal axes
rotated § counterclockwise from the z axis [Fig. 2(b)]
indicate how the dendrite directions are determined by
the orientation of the crystal axes. In addition, identical
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FIG. 2. (a) Twofold dendrites for A = 0.60, 2 = 0.32, n4 = 02 = 0.0, and crystal planes of initial seed parallel to the =
axis. (b) Rotation of twofold dendrites obtained by rotating crystal planes of initial seed § counterclockwise. (c) Rotation by

setting 02 = 3

with the crystal planes of the initial seed parallel to the = axis.
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FIG. 3. (a) Competition between explicit fourfold and implicit lattice anisotropy for A = 0.60, 72 = 0.0, 54 = 0.24 with
the crystal planes of the initial seed inclined % from the +z axis. (b) Strongly nonreflection-symmetric dendrite obtained for

n2 = 0.32 and 74 = 0.12.

parameters with 6o = § and an initial seed with crys-
tal axes parallel to the z axis [Fig. 2(c)] demonstrate
how the dendritic growth direction with respect to the
crystal axes may be changed. In each case, the growth
direction is along a symmetry line of the lattice allow-
ing the dendrite tip to remain symmetric in spite of the
lattice anisotropy.

For n; = 0.0 and n4 > 0, fourfold dendrites should
grow parallel and normal to the crystal axes. We simu-
lated growth with 4 = 0.24 and an initial seed rotated
counterclockwise by % with respect to the z axis [Fig.
3(a)]. The dendrites which attempt to grow parallel to
the lattice planes are also growing along lattice symmetry
directions. These behave normally aside from perhaps a
minor asymmetry induced by the nonsymmetric arrange-
ment of the neighboring dendrites. On the other hand,
we find dendrites growing in the up and down directions;
examination of the vectors shows that the crystal axes
have been bent in the bulk so as to accommodate the
lattice anisotropy. This dynamical possibility (which of
course depends on the size of the crystal, the relative
strength of the bending energy as compared to the sur-
face energy, etc.) is completely absent in the standard
phase-field approach.

The last case we present resulted from an initial seed

with crystal axes parallel to the x axis and the parameters
N2 = 0.32, 94 = 0.12, and 6y = —% [Fig. 3(b)]; here, the
dominant twofold dendrites prefer to grow % clockwise
from the normal to the crystal axes, while the weaker
fourfold dendrites prefer to grow along the perpendicu-
lars and the normals to the crystal axes. Examination of
the orientation of the lattice planes provides explicit ver-
ification of the claim by Brener et al. that competition
between two nonaligned directions leads to nonreflection
symmetric growth along an intermediate angle [14]. This
case also demonstrates bending of the crystal planes, up
to a maximum of 24°.

In summary, we have introduced a complex phase-field
model in which the argument of the complex order pa-
rameter encodes the local breaking of rotational symme-
try. We have shown that this model provides a framework
for allowing the dendritic growth direction to become a
dynamic variable within the model itself. We hope that
this ability of the model will become a useful tool in tack-
ling patterns in monolayer “crystallization,” where there
is increasing evidence that the crystal shape arises from
a complex interplay between the bulk structure and the
interfacial energies.
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